1,618 research outputs found

    A 96 GeV Higgs boson in the N2HDM

    Full text link
    We discuss a ∼3σ signal (local) in the light Higgs-boson search in the diphoton decay mode at ∼96GeV as reported by CMS, together with a ∼2σ excess (local) in the bb¯ final state at LEP in the same mass range. We interpret this possible signal as a Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We find that the lightest Higgs boson of the N2HDM can perfectly fit both excesses simultaneously, while the second lightest state is in full agreement with the Higgs-boson measurements at 125GeV, and the full Higgs-boson sector is in agreement with all Higgs exclusion bounds from LEP, the Tevatron and the LHC as well as other theoretical and experimental constraints. We show that only the N2HDM type II and IV can fit both the LEP excess and the CMS excess with a large ggF production component at ∼96GeV. We derive bounds on the N2HDM Higgs sector from a fit to both excesses and describe how this signal can be further analyzed at the LHC and at future e+e- colliders, such as the ILCThe work was supported in part by the MEINCOP (Spain) under contract FPA2016-78022-P and in part by the AEI through the grant IFT Centro de Excelencia Severo Ochoa SEV-2016-0597. The work of T.B. and S.H. was supported in part by the Spanish Agencia Estatal de Investigación (AEI), in part by the EU Fondo Europeo de Desarrollo Regional (FEDER) through the project FPA2016-78645-P, in part by the “Spanish Red Consolider MultiDark” FPA2017-90566-REDC. The work of T.B. was funded by Fundación La Caixa under ‘La Caixa-Severo Ochoa’ international predoctoral gran

    Thin Shell Wormhole in Heterotic String Theory

    Get PDF
    Using 'Cut and Paste' technique, we develop a thin shell wormhole in heterotic string theory. We determine the surface stresses, which are localized in the shell, by using Darmois-Israel formalism. The linearized stability of this thin wormhole is also analyzed.Comment: 12 pages, 2 figures, Accepted in Int. J. Mod. Phys.

    Privacy Violation and Detection Using Pattern Mining Techniques

    Get PDF
    Privacy, its violations and techniques to bypass privacy violation have grabbed the centre-stage of both academia and industry in recent months. Corporations worldwide have become conscious of the implications of privacy violation and its impact on them and to other stakeholders. Moreover, nations across the world are coming out with privacy protecting legislations to prevent data privacy violations. Such legislations however expose organizations to the issues of intentional or unintentional violation of privacy data. A violation by either malicious external hackers or by internal employees can expose the organizations to costly litigations. In this paper, we propose PRIVDAM; a data mining based intelligent architecture of a Privacy Violation Detection and Monitoring system whose purpose is to detect possible privacy violations and to prevent them in the future. Experimental evaluations show that our approach is scalable and robust and that it can detect privacy violations or chances of violations quite accurately. Please contact the author for full text at [email protected]
    corecore